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In a recent analysis1 it has been possible to treat the fairly general problem of pulse- 
input chromatography with instantaneous equilibrium for linear and .nonlinear 
isotherms, with and without axial dispersion; it had already been demonstrated2a3 
that the partial differential equations of continuous chromatography were very 
difficult to solve for the case of a finite rate of exchange and that even when analytical 
solutions are found they are much too complicated foruse in correlating experimental 
data from actual chromatographic columns. While such analytical solutions are of 
mathematical interest they do not resolve the major problem of the experimental 
chromatographer who would much rather have a fundamental picture of the way 
in which finite rate phenomena and axial dispersion can influence elution time and 
band broadening. To quote GOLDSTEIN~, who discusses equilibrium theory as a limit- 
ing case of kinetic theory, “what is needed, in additioh to experimental work to 
determine the exchange equations, is a method for obtaining a closer approximation 
to the kinetic theory than is provided by the equilibrium theory without solving 
the kinetic theory equations in full. It will clearly be useful to do this first for a single 
solute.” It is the purpose of the present communication to develop an approximate 
model for finite rate phenomena as a perturbation on equilibrium theory such that a 
useful working knowledge can be evolved of the way in which finite rate phenomena 
and axial dispersion can influence chromatography. In effect, the present analysis 
clearly defines the conditions under which dispersion and rate phenomena can be 
additive such that the final partial differential equation is the continuous rate theory 
analogofthe plateapproximation of YANDEEMTER, ZUIDERWEG AND KLINKENBERG~. 

In the discussion that follows C&z) denotes the moles of solute per unit volume 
of mobile phase, rt(t#z) the moles of solute taken up by unit volume of stationary 
phase, u the constant mobile phase velocity through the interstices, c the void frac- 
tion, D the effective molecular diffusivity of the solute in the mobile phase accounting 
for the effect of the packing and I< is the corresponding virtual coefficient of axial 
dispersion in the TAYLOR~~~ sense. The concentration of solute in the mobile phase as a 
function of time t and axial position z is then given byi* 2: 

ac 
z+ ua;= (D +K)$-5s , (I) 

In effect the use of equation (I) presumes that there are no radial concentration 
gradients within the interstices of the stationary phase so that in the TAYLOR'~~ 
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sense this means that dispersion terms of order (K~/zc)d3C/dx3 and higher have ‘been 
neglected. The derivative (I/&)&Z/& represents the exchange of solute between the 
mobile and stationary phases, so that by assuming a finite rate with a linear isotherm: 

an 
- = kAC - ken 
at (2) 

where kA and kD are the rate constants for absorption and desorption respectively. 
Equation (2) can then be rearranged into the more convenient form : 

I an -- = 
ku at 

kC - n (3) 

where k = kA/kr, is the equilibrium constant for the linear isotherm. It is clear from 
eqn. (2) that if kD + 00 and &z/i% is finite as required by eqn. (I), then n = kC and 
art/at = kaC/&, corresponding to instantaneous equilibrium at each point in the 
column. However, small departures from equilibrium can be considered by per- 
mitting kD to have a large, but finite, value when &z/i% = kOC/& may be considered 
to be the zeroth approximation to drt/CJt in eqn. (3), so that the next higher approxi- 
mation for PZ becomes: 

k ac n=kc--- 
kD at 

By repeating the above perturbation method, 
lowing infinite series for 92: 

(4) 

it is possible to generate the fol- 

n=k 
1 ac I aw 

Cm__--- A... 

kB at kDn ato- > 
(5) 

The most useful approximation for n is that obtained by truncating series (5) 
at the term of order I/kD, corresponding to expression (4), Thus, substituting eqn. (4) 
for rt into partial differential equation (I) and redefining the coefhcients, we obtain 

where : 

ac ac 
at + u z = PC + ICC> a22 

aw 
E fXcats 

u = -u/(x + k/e) 

D, = D/(1 + k/E) 

Jr;, = K/(1 + k/E) 

Rc = k/kD ~(1 + k/e) 

(61 

It is clear from eqn. (6) that the effects of diffusion and a finite rate can be made 
additive if 

when eqn. (6) reduces to the following simple form: 

ac ac 
%$-UT= P (DC + KC + uzR,) $: cs> 
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Differential eqn. (8) can be further redu.ced to the form of the parabolic diffusion 
law by the change of variable E = I? - Ut, when 

ac a% -= 
at 

EC - 
a&j:! (9) 

where E c = DC + K, + PRc. Equation (9) may now be used to analyze experimental 
chromatography data in the manner discussed by HOUGHTON~. The solution to 
eqn. (9) for an initial pulse of length L, centered around z = o and containing a 
solute of concentration CO is 

It is now appropriate to discuss the conditions under which rate and diffusion 
phenomena are additive, as in eqns. (8) and (9) : 

(I) Necessary but not sufficient conditions for an additive law are (a) a linear 
equilibrium isotherm, (b) the absence of appreciable radial gradients of concentration 
in the interstices so that dispersion terms of order (K2/zc)a3C/dz3 or higher may be 
neglected, and (c) the existence of only small deviations from instantaneous equilib- 
rium, corresponding to the neglect of rate terms of order (~/kg~)d~C/at~ and higher. 
In addition to the above three requirements, the experimental conditions must be 
such that at least one of the following three conditions is satisfied: 

(2) As discussed above, small deviations from equilibrium require Rc to be small, 
so that if it is also presumed that DC and & are small then the terms on the right of 
eqn. (6) can be considered negligible compared with those on the left, leading to the 
Lagrangian subsidiary equation 

((--f+ +=o (11) 

Relationship (7) between the distance and time operators follows immediately 
from degenerate eqn. (II). The assumption of small values of DC, Kc and R, corre- 
sponds to the case treated by VAN DEEMTER et alas, who demonstrated additivity for 
the plate theory using the solution of ZAPIDUS AND AMUNDSON~. 

(3) It is not necessary, however, to assume that D, and I<, are small if the initial 
pulse width L, is small enough, since the solutions for small Rc will still be of the form 
(IO), when it is readily observed that values of [l] leading to appreciable ratios 
C/C, must be of order Lo/2 ; thus as Lo + o then Z-P Ut, leading again to relationship 
(7) and solution (IO). 

(4) Since solutions for small Rc will be of the form (IO), it is clear that the first 
time derivative, dC/ac, will decrease as t-j- while PC/W will decay as t-9; similarly 
dC/dx will decrease as t-+ and @C/W as t-1. Thus as t -> co the terms on the right of 
eqn. (6) will again become negligible in comparison with first derivatives on the left, 
because the second derivatives decay to zero faster than the first derivatives. Thus 
the additive eqns. (8) and (9) will become asymptotically valid at large times ap- 
proaching infinity. 
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Under the above restrictions the effects of diffusion and rate phenomena are 
additive in that, to a first approximation, they both cause band broadening without 
affecting the elution time. 

SUMMARY 

By considering a finite rate of exchange between the mobile and stationary phases 
as a perturbation on equilibrium theory, it has been possible to arrive at conditions 
for the additivity of rate and diffusion phenomena in continuous chromatography. 
The resulting diffusion equation and its solution for a pulse input provide an alter- 
native method to the plate theory for the treatment of experimental chromatography 
data. 
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